Algorithm

다익스트라 알고리즘

NLP Developer 2023. 5. 8. 01:58
728x90
반응형

개요

  • 특정한 노드에서 출발하여 다른 모든 노드로 가는 최단 경로를 계산
  • 음의 간선이 없을 때 정상적으로 동작
  • 그리디 알고리즘으로 분류된다.

      -> 매상황에서 비용이 가장 적은 노드를 선택해 임의의 과정을 반복

 

동작 과정

  1. 출발 노드 설정
  2. 최단 거리 테이블을 초기화
  3. 방문하지 않은 노드 중에서 최단 거리가 가장 짧은 노드를 선택
  4. 해당 노드를 거쳐 다른 노드로 가는 비용을 계산하여 최단 거리 테이블을 갱신
  5. 위 과정에서 3과 4를 반복

 

  • 알고리즘 동작 과정에서 최단 거리 테이블은 각 노드에 대한 현재까지의 최단 거리 정보를 가지고 있다.
  • 처리 과정에서 더 짧은 경로를 찾으면 '이제부터는 이 경로가 제일 짧은 경로야'라고 갱신한다.

동작 과정 살펴보기

[초기 상태] 그래프를 준비하고 출발 노드를 설정한다.

노드 번호 1 2 3 4 5 6
거리 0 무한 무한 무한 무한 무한

[Step 1] 방문하지 않은 노드 중에서 최단 거리가 가장 짧은 노드인 1번 노드를 처리한다.

노드 번호 1 2 3 4 5 6
거리 0 2 5 1 무한 무한

[Step 2] 방문하지 않은 노드 중에서 최단 거리가 가장 짧은 노드인 4번 노드를 처리한다.

노드 번호 1 2 3 4 5 6
거리 0 2 4 1 2 무한

[Step 3] 방문하지 않은 노드 중에서 최단 거리가 가장 짧은 노드인 2번 노드를 처리한다.

노드 번호 1 2 3 4 5 6
거리 0 2 4 1 2 무한

[Step 4] 방문하지 않은 노드 중에서 최단 거리가 가장 짧은 노드인 5번 노드를 처리한다.

노드 번호 1 2 3 4 5 6
거리 0 2 3 1 2 4

[Step 5] 방문하지 않은 노드 중에서 최단 거리가 가장 짧은 노드인 3번 노드를 처리한다.

노드 번호 1 2 3 4 5 6
거리 0 2 3 1 2 4

[Step 6] 방문하지 않은 노드 중에서 최단 거리가 가장 짧은 노드인 6번 노드를 처리한다.

노드 번호 1 2 3 4 5 6
거리 0 2 3 1 2 4

 

특징

  • 그리디 알고리즘 : 매 상황 방문하지 않은 가장 비용이 적은 노드를 선택해 임의의 과정을 반복한다.
  • 단계를 거치며 한 번 처리된 노드의 최단 거리는 고정되어 더 이상 바뀌지 않는다.

      -> 한 단계당 하나의 노드에 대한 최단 거리를 확실히 찾는 것으로 이해할 수 있다.

  • 다익스트라 알고리즘을 수행한 뒤에 테이블에 각 노드까지의 최단 거리 정보가 저장된다.

      -> 완벽한 형태의 최단 경로를 구하려면 소스코드에 추가적인 기능을 더 넣어야 한다.

 

간단한 구현 방법 Code

import sys
input = sys.stdin.readline
INF = int(1e9) # 무한을 의미하는 값으로 10억을 설정

# 노드의 개수, 간선의 개수를 입력받기
n, m = map(int, input().split())
# 시작 노드 번호를 입력받기
start = int(input())
# 각 노드에 연결되어 있는 노드에 대한 정보를 담는 리스트를 만들기
graph = [[] for i in range(n + 1)]
# 방문한 적이 있는지 체크하는 목적의 리스트를 만들기
visited = [False] * (n + 1)
# 최단 거리 테이블을 모두 무한으로 초기화
distance = [INF] * (n + 1)

# 모든 간선 정보를 입력받기
for _ in range(m):
    a, b, c = map(int, input().split())
    # a번 노드에서 b번 노드로 가는 비용이 c라는 의미
    graph[a].append((b, c))

# 방문하지 않은 노드 중에서, 가장 최단 거리가 짧은 노드의 번호를 반환
def get_smallest_node():
    min_value = INF
    index = 0 # 가장 최단 거리가 짧은 노드(인덱스)
    for i in range(1, n + 1):
        if distance[i] < min_value and not visited[i]:
            min_value = distance[i]
            index = i
    return index

def dijkstra(start):
    # 시작 노드에 대해서 초기화
    distance[start] = 0
    visited[start] = True
    for j in graph[start]:
        distance[j[0]] = j[1]
    # 시작 노드를 제외한 전체 n - 1개의 노드에 대해 반복
    for i in range(n - 1):
        # 현재 최단 거리가 가장 짧은 노드를 꺼내서, 방문 처리
        now = get_smallest_node()
        visited[now] = True
        # 현재 노드와 연결된 다른 노드를 확인
        for j in graph[now]:
            cost = distance[now] + j[1]
            # 현재 노드를 거쳐서 다른 노드로 이동하는 거리가 더 짧은 경우
            if cost < distance[j[0]]:
                distance[j[0]] = cost

# 다익스트라 알고리즘을 수행
dijkstra(start)

# 모든 노드로 가기 위한 최단 거리를 출력
for i in range(1, n + 1):
    # 도달할 수 없는 경우, 무한(INFINITY)이라고 출력
    if distance[i] == INF:
        print("INFINITY")
    # 도달할 수 있는 경우 거리를 출력
    else:
        print(distance[i])

 

간단한 구현 방법 성능 분석

  • 총 O(V) 번에 걸쳐서 최단 거리가 가장 짧은 노드를 매번 선형 탐색해야 한다.

      -> 따라서 전체 시간 복잡도는 O(V^2)dlek.

  • 일반적으로 코딩 테스트의 최단 경로 문제에서 전체 노드의 개수가 5000개 이하라면 이 코드로 문제를 해결할 수 있다,

      -> But, 노드의 개수가 10000개를 넘어가는 문제라면?

 

개선된 구현 방법

  • 단계마다 방문하지 않은 노드 중에서 최단 거리가 가장 짧은 노드를 선택하기 위해 힙(Heap) 자료 구조를 이용한다.
  • 다익스트라 알고리즘이 동작하는 기본 원리는 동일

      -> 현재 가장 가까운 노드를 저장해 놓기 위해서 힙 자료 구조를 추가적으로 이용한다는 점이 다르다.

      -> 현재의 최단 거리가 가장 짧은 노드를 선택해야 하므로 최소 힙을 사용한다.

 

개선된 구현 방법 Code

import heapq
import sys
input = sys.stdin.readline
INF = int(1e9) # 무한을 의미하는 값으로 10억을 설정

# 노드의 개수, 간선의 개수를 입력받기
n, m = map(int, input().split())
# 시작 노드 번호를 입력받기
start = int(input())
# 각 노드에 연결되어 있는 노드에 대한 정보를 담는 리스트를 만들기
graph = [[] for i in range(n + 1)]
# 최단 거리 테이블을 모두 무한으로 초기화
distance = [INF] * (n + 1)

# 모든 간선 정보를 입력받기
for _ in range(m):
    a, b, c = map(int, input().split())
    # a번 노드에서 b번 노드로 가는 비용이 c라는 의미
    graph[a].append((b, c))

def dijkstra(start):
    q = []
    # 시작 노드로 가기 위한 최단 경로는 0으로 설정하여, 큐에 삽입
    heapq.heappush(q, (0, start))
    distance[start] = 0
    while q: # 큐가 비어있지 않다면
        # 가장 최단 거리가 짧은 노드에 대한 정보 꺼내기
        dist, now = heapq.heappop(q)
        # 현재 노드가 이미 처리된 적이 있는 노드라면 무시
        if distance[now] < dist:
            continue
        # 현재 노드와 연결된 다른 인접한 노드들을 확인
        for i in graph[now]:
            cost = dist + i[1]
            # 현재 노드를 거쳐서, 다른 노드로 이동하는 거리가 더 짧은 경우
            if cost < distance[i[0]]:
                distance[i[0]] = cost
                heapq.heappush(q, (cost, i[0]))

# 다익스트라 알고리즘을 수행
dijkstra(start)

# 모든 노드로 가기 위한 최단 거리를 출력
for i in range(1, n + 1):
    # 도달할 수 없는 경우, 무한(INFINITY)이라고 출력
    if distance[i] == INF:
        print("INFINITY")
    # 도달할 수 있는 경우 거리를 출력
    else:
        print(distance[i])
728x90
반응형